ON A COMPUTER MONITOR, in a laboratory half the size of a galley kitchen, I’m taking a look at the future. But the grainy object on the screen isn’t all that remarkable. It’s just a horse egg in a petri dish, blown up to the point where I can see the outline of its outer membrane. That’s when a white-coated scientist directs my attention to the device at my right: a high-powered microscope projecting the image of the horse egg, with two metal spikes the size of syringes angled at each side of the plate. Beneath me on the floor is an orange pedal I’m instructed to press with my foot. Suddenly, on the screen, I see a laser beam carve an incision into the membrane of the horse egg, like a hot knife going through butter.
In a few more years, the same laser-guided system will be used to punch a hole into an egg taken from an Asian elephant, remove the nucleus of that cell, and insert a nucleus containing edited genes required for surviving arctic temperatures, such as fuzzy hair and extra fat—all in the pursuit of creating the closest animal to a woolly mammoth to walk the Earth in many millennia.
To Learn More Click Here.